HELLLPPP!!!!!!! WILL GIVE 100 POINTS AND BRAINLIEST!!!!!!

Answer:
g''(0) = 8
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Algebra I
Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative: [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]
Step-by-step explanation:
Step 1: Define
[Given] g(x) = eˣ · f(x)
[Solve] g''(0)
Step 2: Differentiate
Step 3: Evaluate
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
The correct answer is 8 (Option A)
Step-by-step explanation:
[tex] {g}^{11} (0) = 1(3) + 2(1) + 1(1) + 1(2) = 3 + 2 + 1 + 2 = 8[/tex]