Respuesta :

Space

Answer:

g''(0) = 8

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Terms/Coefficients

Calculus

Derivatives

Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative:                                                                                                               [tex]\displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'[/tex]

Step-by-step explanation:

Step 1: Define

[Given] g(x) = eˣ · f(x)

  • f(0) = 1
  • f'(0) = 2
  • f''(0) = 3

[Solve] g''(0)

Step 2: Differentiate

  1. [1st Derivative] Product Rule:                                                                        g'(x) = eˣf(x) + eˣf'(x)
  2. [2nd Derivative] Product Rule [Derivative Property - Addition]:                  g''(x) = [eˣf(x) + eˣf'(x)] + [eˣf'(x) + eˣf''(x)]
  3. [2nd Derivative] Combine like terms [Addition]:                                          g''(x) = eˣf(x) + 2eˣf'(x) + eˣf''(x)

Step 3: Evaluate

  1. [2nd Derivative] Substitute in variables:                                                      g''(0) = e⁰f(0) + 2e⁰f'(0) + e⁰f''(0)
  2. [2nd Derivative] Substitute in functions:                                                      g''(0) = e⁰(1) + 2e⁰(2) + e⁰(3)
  3. [2nd Derivative] Evaluate exponents:                                                          g''(0) = 1(1) + 2(1)(2) + 1(3)
  4. [2nd Derivative] Multiply:                                                                              g''(0) = 1 + 4 + 3
  5. [2nd Derivative] Add:                                                                                    g''(0) = 8

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

Answer:

The correct answer is 8 (Option A)

Step-by-step explanation:

[tex] {g}^{11} (0) = 1(3) + 2(1) + 1(1) + 1(2) = 3 + 2 + 1 + 2 = 8[/tex]