Need answer fast with all the steps included please

Answer:
[tex](\frac{6x^2y}{5})[/tex]
Step-by-step explanation:
Given
[tex]\frac{(2x)(3x^3y^2)}{5x^2y}[/tex]
Required
Solve
Open the brackets
[tex]\frac{(2x)(3x^3y^2)}{5x^2y}[/tex] = [tex]\frac{(2x*3x^3y^2)}{5x^2y}[/tex]
[tex]\frac{(2x)(3x^3y^2)}{5x^2y}[/tex] = [tex]\frac{(6x^4y^2)}{5x^2y}[/tex]
Apply law of indices:
[tex]\frac{(2x)(3x^3y^2)}{5x^2y}[/tex] = [tex]\frac{(6x^{4-2}y^{2-1})}{5}[/tex]
[tex]\frac{(2x)(3x^3y^2)}{5x^2y}[/tex] = [tex]\frac{(6x^2y)}{5}[/tex]
[tex]\frac{(2x)(3x^3y^2)}{5x^2y}[/tex] = [tex](\frac{6x^2y}{5})[/tex]