Respuesta :

Answer:

[tex](8x^6) * (xy^2)^3 = 8x^9y^6[/tex]

[tex](2x^3y^2)^3 = 8x^9y^6[/tex]

Step-by-step explanation:

Given

[tex]8x^9y^6[/tex]

Required

Select 2 equivalent expressions

The equivalent expressions are (a) and (c) and the proof is as follows

(a)

[tex](8x^6) * (xy^2)^3[/tex]

Open brackets

[tex](8x^6) * (xy^2)^3 = 8x^6 * x^{1*3}y^{2*3}[/tex]

[tex](8x^6) * (xy^2)^3 = 8x^6 * x^3y^6[/tex]

Apply law of indices

[tex](8x^6) * (xy^2)^3 = 8x^{6+3}y^6[/tex]

[tex](8x^6) * (xy^2)^3 = 8x^9y^6[/tex]

(c)

[tex](2x^3y^2)^3[/tex]

Open brackets

[tex](2x^3y^2)^3 = 2^3x^{3*3}y^{2*3}[/tex]

[tex](2x^3y^2)^3 = 8x^9y^6[/tex]