Respuesta :

Answer:

[tex]Rate = 19[/tex]

Step-by-step explanation:

Given

[tex]y = x^2 + 3x[/tex]

[tex]1 \le x \le 15[/tex]

Required

Determine the average rate of change

This is calculated as:

[tex]Rate = \frac{f(b) - f(a)}{b - a}[/tex]

Where

a = 1 and b = 15

So, we have:

[tex]Rate = \frac{f(15) - f(1)}{15 - 1}[/tex]

[tex]Rate = \frac{f(15) - f(1)}{14}[/tex]

Solve f(15):

[tex]f(15) = 15^2 + 3*15 = 270[/tex]

Solve f(1)

[tex]f(1) = 1^2 + 3*1 = 4[/tex]

So:

[tex]Rate = \frac{f(15) - f(1)}{14}[/tex]

[tex]Rate = \frac{270- 4}{14}[/tex]

[tex]Rate = \frac{266}{14}[/tex]

[tex]Rate = 19[/tex]