write the equation of the parabola in vertex form

Answer:
f(x)= - 4 ([tex]x^{2}[/tex]) + 3
Step-by-step explanation:
1. start with f(x)=a([tex]x-p)^{2}[/tex]+q
2. in that vertex is (p,q) noticing that use given vertex(0,3) and change the equation/function --> f(x)=a(x-0)+3 --> f(x)=a([tex]x)^{2}[/tex]+3
3. Then use the give point and substitute to find "a" value --> - 1 = a([tex]1)^{2}[/tex]+3
--> - 1 = a + 3 --> a= - 4
4. put the "a" value into the #2. function/equation --> f(x)= - 4([tex]x)^{2}[/tex]+3