A4.0 μF capacitor is connected in series with a 2.0 MΩ resistor, and this combination is connected across an ideal 44.0 V DC battery. Initially the charge on the capacitor is zero. What is the current in the circuit when the capacitor has reached 80 % of its maximum voltage?

Respuesta :

Answer:

  i = 17.6 10⁻⁶ A

Explanation:

The charge of a capacitor in a series circuit is

           i = [tex]\frac{v_o}{R}[/tex] [tex]e^{ - \frac{t}{RC} }[/tex]                     (1)

           R i = V₀  e^{ - \frac{t}{RC} }

           [tex]\frac{V}{V_o}[/tex] = e^{ - \frac{t}{RC} }

they tell us that the voltage is 80% bone

           [tex]\frac{V}{V_o}[/tex] = 0.80

we substitute

           0.80 = e^{ - \frac{t}{RC} }

           ln 0.80 = [tex]- \frac{t}{RC}[/tex]

           t = - RC ln 0.80

in the problem they give the value of R = 2.0 10⁶ Ω and C = 4.0 10⁻⁶ F

          t = - 2 10⁶  4 10⁻⁶ ln 0.8

          t = 1,785 s

we substitute in equation 1

         i = [tex]\frac{44.0}{2 \ 10^6}[/tex] [tex]e^{- \frac{1.785}{2 \ 4 } }[/tex]

         i = 22 10⁻⁶ [tex]e^{-0.2231}[/tex]

         i = 17.6 10⁻⁶ A