The table above gives values of f, f’, g, and g’ at selected values of x. If h(x) = f(g(x)), then h’(1) =

Answer:
h'(-1) = 5
Explanation:
Given - The table above gives values of f, f’, g, and g’ at selected values
of x.
x f(x) f'(x) g(x) g'(x)
-1 6 5 3 -2
1 3 -3 -1 2
3 1 -2 2 3
To find - If h(x) = f(g(x)), then h’(1) = ......?
Proof -
Given that,
h(x) = f(g(x))
⇒h'(x) = f'(g(x))
⇒h'(1) = f'(g(1))
Now,
g(1) = -1
⇒f'(-1) = 5
⇒h'(-1) = 5
A composite function combines two or more functions.
The value of h'(1) is 5
The given parameter is:
[tex]\mathbf{h(x) = f(g(x)}}[/tex]
Take inverse of both sides
[tex]\mathbf{h'(x) = f'(g(x)}}[/tex]
Substitute 1 for x
[tex]\mathbf{h'(1) = f'(g(1))}}[/tex]
From the table, we have:
[tex]\mathbf{g(1) = -1}[/tex]
So, the equation becomes
[tex]\mathbf{h'(1) = f'(-1)}}[/tex]
From the table, we have:
[tex]\mathbf{f'(-1) =5}[/tex]
So, the equation becomes
[tex]\mathbf{h'(1) = 5}[/tex]
Hence, the value of h'(1) is 5
Read more about composite functions at:
https://brainly.com/question/18839694