Answer:
x = [tex]25.8^{o}[/tex] and y = [tex]51.4^{o}[/tex]
Step-by-step explanation:
Known that he sum of angles on a straight line is [tex]180^{o}[/tex]. From the diagram;
2y + x + y = [tex]180^{o}[/tex]
x + 3y = [tex]180^{o}[/tex] ................ 1
Also,
2x + x + 2y = [tex]180^{o}[/tex]
3x + 2y = [tex]180^{o}[/tex] .............. 2
Using the elimination method, multiply equation 1 by 3 and equation 2 by 1
3x + 9y = 540 ............ 3
3x + 2y = [tex]180^{o}[/tex] ............. 4
7y = 360
y = [tex]\frac{360}{7}[/tex]
y = [tex]51.4^{o}[/tex]
substitute the value of y in equation 1,
x + 3y = [tex]180^{o}[/tex]
x + 3(51.4) = [tex]180^{o}[/tex]
x + 154.2 = [tex]180^{o}[/tex]
x = [tex]180^{o}[/tex] - 154.2
x = [tex]25.8^{o}[/tex]
Thus, x = [tex]25.8^{o}[/tex] and y = [tex]51.4^{o}[/tex]