Respuesta :

Given:

A figure of a triangle, AD = 6 and DB = 2.

To find:

The length of AC.

Solution:

In a right angle triangle,

[tex]\cos \theta =\dfrac{Base}{Hypotenuse}[/tex]

In triangle ACD,

[tex]\cos A =\dfrac{AD}{AC}[/tex]

[tex]\cos 30^\circ =\dfrac{6}{AC}[/tex]

[tex]\dfrac{\sqrt{3}}{2}=\dfrac{6}{AC}[/tex]

[tex]\sqrt{3}\times AC=6\times 2[/tex]

[tex]AC=\dfrac{12}{\sqrt{3}}[/tex]

[tex]AC=\dfrac{12}{\sqrt{3}}\times \dfrac{\sqrt{3}}{\sqrt{3}}[/tex]

[tex]AC=\dfrac{12\sqrt{3}}{3}[/tex]

[tex]AC=4\sqrt{3}[/tex]

Therefore, the length of AC is [tex]4\sqrt{3}[/tex] units.