Respuesta :

Answer:

[tex] A = \dfrac{8x}{3x + 1} [/tex]

Step-by-step explanation:

[tex]A = \dfrac{bh}{2}[/tex]

[tex] A = \dfrac{16x^2}{9x^2 - 1} \times \dfrac{6x^2 - 5x + 1}{2x^2 - x} \times \dfrac{1}{2} [/tex]

[tex] A = \dfrac{(16x^2)(6x^2 - 5x + 1)}{2(9x^2 - 1)(2x^2 - x)} [/tex]

[tex] A = \dfrac{(16x^2)(2x - 1)(3x - 1)}{2(3x - 1)(3x + 1)(x)(2x - 1)} [/tex]

[tex] A = \dfrac{8x}{3x + 1} [/tex]