Answer:
"150000 N/m²" is the right approach.
Explanation:
According to the question, the pressure on the two spheres 1 and 2 is same.
Sphere 1 and 2:
Then,
⇒ [tex]P_1=P_2[/tex]
⇒ [tex]\frac{\Delta V_1}{V_1}=\frac{\Delta V_2}{V_2}[/tex]
and the bulk modulus be,
⇒ [tex]B_1=B_2[/tex]
Sphere 3:
⇒ [tex]\frac{\Delta V_3}{V_3} =\frac{\frac{\Delta V_1}{V_1} }{\frac{\Delta V_2}{V_2} } =1[/tex]
then,
⇒ [tex]P_3=B\times \frac{\Delta V_3}{V_3}[/tex]
⇒ [tex]=B\times 1[/tex]
⇒ [tex]=150000\times 1[/tex]
⇒ [tex]=150000 \ N/m^2[/tex]