Determine a formula for the maximum height h that a rocket will reach if launched vertically from the Earth's surface with speed v0(v < vesc). Express in terms of v0, rE, ME, and G.

Respuesta :

Initially, the energies are:

[tex]U_{i}=-\frac{G M_{\varepsilon} m}{r_{e}} \\ =K_{i}=\frac{1}{2} m v_{0}^{2}[/tex]

At final point, the energies are:

[tex]U_{f}=-\frac{G M_{\varepsilon} m}{r_{e}+h} \\ K_{f}=\frac{1}{2} m(0)^{2}=0[/tex]

Using conservation law of energy,

[tex]-\frac{G M_{e} m}{r_{e}}+\frac{1}{2} m v_{0}^{2} &=-\frac{G M_{e} m}{r_{\varepsilon}+h} \\ -\frac{G M_{e}}{r_{e}}+\frac{v_{0}^{2}}{2} &=-\frac{G M_{e}}{r_{e}+h} \\ \frac{-2 G M_{e}+r_{e} v_{0}^{2}}{2 r_{e}} &=-\frac{G M_{e}}{r_{e}+h} \\ \frac{r_{e}+h}{G M_{e}} &=\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}[/tex]

The equation is further simplified as:

[tex]r_{e}+h &=\left(\frac{2 r_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}\right) G M_{e} \\ h &=\frac{2 r_{e} G M_{e}}{2 G M_{e}-r_{e} v_{0}^{2}}-r_{e} \\ &=\frac{2 r_{e} G M_{e}-2 r_{e} G M_{e}+r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}} \\ & h=\frac{r_{e}^{2} v_{0}^{2}}{2 G M_{e}-r_{e} v_{0}^{2}}[/tex]