Answer:
CI= [4.324 , 5.6758]
Step-by-step explanation:
The 90 % confidence interval for the normal distribution is given by
(x`1- x2` ) ± t ∝/2 (υ) .Sp √1/n1 + 1/n2
where Sp = √[n1-1 (s1)² + n2-1 (s2)²]/n1+n2-2
and n1= 12 n2=10
x1`= 16 km x`2 = 11km
s1= 1km s2= 0.8km
and degrees of freedom υ= n1+n2-2= 20
Here ∝/2 = 0.05
From the table we get the value of t∝/2 (υ) to be 1.725
Putting the values
Sp = √[n1-1 (s1)² + n2-1 (s2)²]/n1+n2-2
Sp= √11(1) + 9(0.8)²/20
Sp= √0.838=0.915
CI = (x`1- x2` ) ± t ∝/2 (υ) .Sp √1/n1 + 1/n2
CI = (16-11)± 1.725 * 0.915√1/12+ 1/10
CI = (5) ± 0.675819
CI=[ 4.324 , 5.6758]