Space shuttle Challengerexploded because of O-ring failure shortly after it was launched. O-ring damage and temperature at time of launch for the 23 space shuttle flights that preceded the Challenger. The data is reproduced below.
Flights with O-ring damage 43 57 58 63 70 70 75
Flights with no O-ring damage 66 67 67 67 68 69 70 70 72 73 75 76 76 78 79 81
Is the mean launch temperature for flights with O-ring damage significantly less than for flights with no O-ring damage? Use 5% level of significance.

Respuesta :

Solution :

The null and the alternate hypothesis can be stated as :

Null hypothesis

[tex]$H_0:\mu_1 \geq \mu_2$[/tex]

Alternate hypothesis

[tex]$H_a:\mu_1 \leq \mu_2$[/tex]

We known;

[tex]$\overline x_1=\frac{\sum_{i=1}^n X_i}{n_1}$[/tex]

   [tex]$=\frac{43+....+75}{7}$[/tex]

   = 62.286

[tex]$\overline x_2=\frac{\sum_{i=1}^n X_i}{n_2}$[/tex]

   [tex]$=\frac{66+....+81}{16}$[/tex]

   = 72.125

[tex]$s_1^2=\frac{\sum_{i=1}^n(X_i- \overline X_1)^2}{n_1-1}$[/tex]

    [tex]$=\frac{(43-65.5)^2+....+(75-65.5)^2}{7-1}$[/tex]

   = 116.571

[tex]$s_2^2=\frac{\sum_{i=1}^n(X_i- \overline X_2)^2}{n_2-1}$[/tex]

    [tex]$=\frac{(66-72.13)^2+....+(81-72.13)^2}{16-1}$[/tex]

   = 23.45

Therefore, calculating the test statics :

[tex]$t=\frac{\overline x_1 - \overline x_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}$[/tex]

[tex]$t=\frac{62.29-72.125}{\sqrt{\frac{116.571}{7}+\frac{23.45}{16}}}$[/tex]

[tex]$t=\frac{-9.839}{4.2566}$[/tex]

 = -2.312

Now calculating the P-value for the test as follows :

P=T.DIST(t, df)

[tex]$df=\frac{\left(\frac{s_1^2}{n_1}+\frac{s^2_2}{n_2}\right)^2}{\frac{1}{n_1-1}\left(\frac{s^2_X}{n_1}\right)^2+\frac{1}{n_2-1}\left(\frac{s^2_Y}{n_2}\right)^2}$[/tex]

[tex]$df=\frac{\left(\frac{116.571}{7}+\frac{23.45}{16}\right)^2}{\frac{1}{7-1}\left(\frac{116.571}{7}\right)^2+\frac{1}{16-1}\left(\frac{23.45}{16}\right)^2}$[/tex]

    [tex]$=\frac{328.2868}{46.36395}$[/tex]

   [tex]$\approx 7$[/tex]

P=T.DIST(t, df)

 =T.DIST(-2.31, 7)

 = 0.0270

Thus, the [tex]$\text{P-value}$[/tex] of the test is P = 0.0270 is [tex]$\text{less}$[/tex] than the level of significance [tex]$\alpha= 0.05$[/tex]. Hence the researcher can reject the null hypothesis.

Conclusion: The mean launch temperature for the flights with O ring damages less than that for the flights with no O rings.