Use synthetic division to solve (2x3+4x2 – 35x+15) +(x-3). What is the quotient?
O 2x2–2x-29+
102
X+ 3
102
O 2x2 - 2x-29+
X-3
2x + 10x2 - 6x
2x2 + 10x-5

Respuesta :

Given:

[tex](2x^3+4x^2-35x+15)\div (x-3)[/tex]

To find:

The quotient by using the synthetic division.

Solution:

We have,

[tex](2x^3+4x^2-35x+15)\div (x-3)[/tex]

Here,

Dividend = [tex](2x^3+4x^2-35x+15)[/tex]

Divisor = [tex]x-3[/tex]

The coefficient of dividend are [tex]2, 4, -35, 15[/tex]. Write the coefficients of the dividend on the top row and we need to use 3 as divisor for synthetic division. The synthetic division is show below:

[tex]3 | 2\quad \quad 4\quad \quad -35\quad \quad 15\\\quad{}\quad{} \quad \quad \ 6\quad \quad \ \ \ 30\quad -15\\\overline{\quad 2\quad \quad 10\quad \quad -5\quad \quad 0\ \ \ }[/tex]

The bottom row represents the coefficients of quotient but the last element of bottom row is the remainder.

Degree of dividend is 3 and degree of division is 1. So, the degree of quotient must be [tex]3-1=2[/tex].

The quotient is [tex]2x^2+10x-5[/tex] and the reminder is 0.

Therefore, the correct option is D.