Given:
The matrix equation is:
[tex]\begin{bmatrix}-18&3&5\end{bmatrix}-C=\begin{bmatrix}-22&1&12\end{bmatrix}[/tex]
To find:
The value of matrix C.
Solution:
Let [tex]A=\begin{bmatrix}-18&3&5\end{bmatrix},B=\begin{bmatrix}-22&1&12\end{bmatrix}[/tex]. Then the given equation can be rewritten as
[tex]A-C=B[/tex]
[tex]-C=B-A[/tex]
[tex]C=-(B-A)[/tex]
[tex]C=A-B[/tex]
On substituting the values of the matrices, we get
[tex]C=\begin{bmatrix}-18&3&5\end{bmatrix}-\begin{bmatrix}-22&1&12\end{bmatrix}[/tex]
[tex]C=\begin{bmatrix}-18-(-22)&3-1&5-12\end{bmatrix}[/tex]
[tex]C=\begin{bmatrix}-18+22&2&-7\end{bmatrix}[/tex]
[tex]C=\begin{bmatrix}-4&2&-7\end{bmatrix}[/tex]
Therefore, the correct option is C.