Respuesta :

Given:

The matrix equation is:

[tex]\begin{bmatrix}-18&3&5\end{bmatrix}-C=\begin{bmatrix}-22&1&12\end{bmatrix}[/tex]

To find:

The value of matrix C.

Solution:

Let [tex]A=\begin{bmatrix}-18&3&5\end{bmatrix},B=\begin{bmatrix}-22&1&12\end{bmatrix}[/tex]. Then the given equation can be rewritten as

[tex]A-C=B[/tex]

[tex]-C=B-A[/tex]

[tex]C=-(B-A)[/tex]

[tex]C=A-B[/tex]

On substituting the values of the matrices, we get

[tex]C=\begin{bmatrix}-18&3&5\end{bmatrix}-\begin{bmatrix}-22&1&12\end{bmatrix}[/tex]

[tex]C=\begin{bmatrix}-18-(-22)&3-1&5-12\end{bmatrix}[/tex]

[tex]C=\begin{bmatrix}-18+22&2&-7\end{bmatrix}[/tex]

[tex]C=\begin{bmatrix}-4&2&-7\end{bmatrix}[/tex]

Therefore, the correct option is C.

Answer: C

Step-by-step explanation: [ 4 2 -7 ]