Respuesta :

For h(x), to find out the maximum, you would need to use this formula: [tex]c-(\frac{b^{2} }{4a} )[/tex]

We are given the equation: [tex]h(x)=-x^{2}+4x-2[/tex].

So, a = -1, b = 4, and c = -2. Then, substitute the numbers into the formula:

h(x)'s maximum = [tex]c-(\frac{b^{2} }{4a} )[/tex]

                          = [tex](-2)-(\frac{(4)^{2} }{4(-1)} )[/tex]

                          = [tex](-2)-(\frac{16 }{-4} )[/tex]

                          = [tex](-2)-(-4)[/tex]

                          = [tex]2[/tex]

For g(x), to find out the maximum, just look at the highest point of y on the graph of the function, which is 2.

Thus, the answer you have chosen is the correct answer, which is choice 3: functions g and h have the same maximum of 2. Hope this helps :)