Answer:
The quotient of the rational function is [tex]3 -\frac{1}{x+2}[/tex].
Step-by-step explanation:
We proceed to solve the expression by solely algebraic means below:
1) [tex]\frac{3\cdot x + 5}{x+2}[/tex] Given
2) [tex]\frac{(3\cdot x + 5) + 0}{x + 2}[/tex] Modulative property
3) [tex]\frac{(3\cdot x +5) + [1+(-1)]}{x+2}[/tex] Existence of additive inverse/Associative property
4) [tex]\frac{(3\cdot x + 6)+(-1)}{x+2}[/tex] Definition of addition/Commutative and associative properties
5) [tex]\frac{3\cdot (x+2)}{x+2} + \left(-\frac{1}{x+2} \right)[/tex] [tex]\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}[/tex]/ [tex]\frac{-a}{b} = \frac{a}{-b} = -\frac{a}{b}[/tex]/Distributive property
6) [tex]3 -\frac{1}{x+2}[/tex] Definition of division/Existence of multiplicative inverse/Modulative property/Definition of subtraction/Result
The quotient of the rational function is [tex]3 -\frac{1}{x+2}[/tex].