An object has a weight of 1550N when it is on the surface of a planet of radius R. What will be the gravitational force on the object after it has been moved to a distance of 4R from the surface of the planet?

Respuesta :

Answer:

W = 96.875 N

Explanation:

For this exercise let's use the law of universal gravitation

          F = [tex]G \frac{m M }{r^2}[/tex]

we substitute this force in Newton's second law

          F = m a

          G \frac{m M }{r^2} = m a

          a = [tex]G \frac{M}{r^2}[/tex]

This sidewalk we will call it gravity acceleration

           g₀ = a

the weight of a body is

         W₀ = m g₀

         

if we change the cario of r ’= 4r

          a’=  [tex]G \frac{M}{r'^2 }[/tex]

          a ’= G \frac{M}{(4r)^2 }

           a' = [tex]G \frac{M}{r^2} \ \frac{1}{16}[/tex]

          a ’=  [tex]\frac{g_o}{16}[/tex]

           

therefore the weight of the body must be

           W = m g = [tex]m \ \frac{g_o}{16}[/tex]

           W = W₀ / 16

            W = 1550/16

            W = 96.875 N