Write the system of equations as a matrix equation AX=B, with A as the coefficient matrix of the system.
Please help!

Answer:
[tex]\left[\begin{array}{ccc}1&2\\6&7\end{array}\right]\cdot \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}0\\-10\end{array}\right][/tex]
Step-by-step explanation:
The system of equation in matrix form is defined by following vector formula:
[tex]\vec A \cdot \vec x = \vec b[/tex] (1)
Where:
[tex]\vec A[/tex] - Matrix of coefficients.
[tex]\vec x[/tex] - Column vector of variables.
[tex]\vec b[/tex] - Column vector of results.
If we know that [tex]x + 2\cdot y = 0[/tex] and [tex]6\cdot x + 7\cdot y = -10[/tex], then the system of equations in matrix form is:
[tex]\vec A = \left[\begin{array}{ccc}1&2\\6&7\end{array}\right][/tex], [tex]\vec x = \left[\begin{array}{ccc}x\\y\end{array}\right][/tex], [tex]\vec b = \left[\begin{array}{ccc}0\\-10\end{array}\right][/tex]
Then,
[tex]\left[\begin{array}{ccc}1&2\\6&7\end{array}\right]\cdot \left[\begin{array}{ccc}x\\y\end{array}\right] = \left[\begin{array}{ccc}0\\-10\end{array}\right][/tex]