Solve the system of linear equations by substitution.

[tex] \large{\red{\underline{\bf{Required \: Solution \: : }}}} [/tex]
Here we have been provided with two equations and we have to solve them by substitution method and get the value of x and y.
Here we have been already provided a temporary value of y in first equation so let us substitute in the second equation.
[tex]: \implies \: \sf{y \: = \: 4x \: - \: 10}[/tex]
[tex]: \implies \: \sf{x \: - \: 4 \: = \: 4x \: - \: 10}[/tex]
[tex]: \implies \: \sf{x \: = \: 4x \: - \: 10 \: + \: 4}[/tex]
[tex]: \implies \: \sf{x \: = \: 4x \: - 6}[/tex]
[tex]: \implies \: \sf{x \: - 4x \: = \: - 6}[/tex]
[tex]: \implies \: \sf{ - 3x \: = \: - 6}[/tex]
[tex]: \implies \: \sf{ \cancel - \: 3x \: = \: \cancel- \: 6}[/tex]
[tex]: \implies \: \sf{ 3x \: = \: 6}[/tex]
[tex]: \implies \: \sf{ x \: = \: \dfrac{6}{3} }[/tex]
[tex]: \implies \: \sf{ x \: = \: \cancel\dfrac{6}{3} }[/tex]
[tex]: \implies \: \boxed{\bf{ x \: = \:2 }} \pink\bigstar[/tex]
Therefore, value of x is 2..!!
Finding out value of y :
Here we would substitute the value of x which we got as 2 in the first equation inorder to get the value of y.
[tex]: \implies \: \sf{ y \: = \: x \: - \: 4 }[/tex]
[tex]: \implies \: \sf{ y \: = \: 2 \: - \: 4 }[/tex]
[tex]: \implies \: \boxed{\bf{ y \: = \:-2 }} \pink\bigstar[/tex]
Therefore, value of y is -2.