Un distribuidor debe repartir 879 botellas de cerveza entre 3 bares. Si el pedido del bar A es la mitad que el del bar B y la cuarta parte del bar C. ¿Cuántas botellas le tocan a cada bar?

Respuesta :

Answer:

Total number of bottles Bar A get = 126

Total number of bottles Bar B get = 251

Total number of bottles Bar C get = 502

Step-by-step explanation:

Given - A distributor must distribute 879 bottles of beer among 3 bars. If the order of bar A is half that of bar B and a quarter of bar C.

To find - How many bottles do each bar get?

Proof -

Let us assume that

Total number of bottles Bar A get = x

Total number of bottles Bar B get = y

Total number of bottles Bar C get = z

Now,

Given that

Total bottles distributed = 879

⇒x + y + z = 879                  ..............(1)

Now,

Given that, the order of bar A is half that of bar B and a quarter of bar C

⇒x = [tex]\frac{1}{2}y[/tex] , x = [tex]\frac{1}{4} z[/tex]

⇒y = 2x                          .............(2)

  z = 4x                          ..............(3)

Now,

Put the values of y and z in equation (1), we get

x + 2x + 4x = 879

⇒7x = 879

⇒x = [tex]\frac{879}{7}[/tex] = 125.57

⇒y = 2(125.57) = 251.14

⇒z = 4(125.57) = 502.28

∴ we get

Total number of bottles Bar A get = x = 125.57 ≈ 126

Total number of bottles Bar B get = y = 251.14 ≈ 251

Total number of bottles Bar C get = z = 502.28  ≈ 502