Answer:
[tex]b_1 \approx 7.2[/tex]
[tex]b_2 \approx 14.4[/tex]
Step-by-step explanation:
Given
[tex]Area = 65cm^2[/tex] --- Area of the triangle
[tex]b_2 = 2b_1[/tex] --- the bases of the trapezoid
The missing parameters is:
[tex]h=6 cm[/tex] --- Trapezoid height
Required
Determine b1 and b2
Since the areas of the trapezoid and the triangle are the same, then:
[tex]Area = \frac{1}{2}(b_1 + b_2) *h[/tex]
So, we have:
[tex]65 = \frac{1}{2}(b_1 +b_2) * 6[/tex]
Substitute[tex]b_2 = 2b_1[/tex]
[tex]65 = \frac{1}{2}(b_1 +2b_1) * 6[/tex]
[tex]65 = \frac{1}{2}(3b_1) * 6[/tex]
[tex]65 = 3b_1 * 3[/tex]
[tex]65 = 9b_1[/tex]
Solve for [tex]b_1[/tex]
[tex]b_1 = \frac{65}{9}[/tex]
[tex]b_1 \approx 7.2[/tex]
Substitute [tex]b_1 \approx 7.2[/tex] in [tex]b_2 = 2b_1[/tex]
[tex]b_2 \approx 2 * 7.2[/tex]
[tex]b_2 \approx 14.4[/tex]