Determine the sample size the research respondents. taht selected 142 out of 1975 ,a mathematical formula for the purpose of determining the sample size. n =z²σ² E²

Respuesta :

Answer:

See Explanation

Explanation:

Given

[tex]N = 1975[/tex] --- Population

[tex]s = 142[/tex] --- Selected

Required

Determine the sample size (n) using: [tex]n = \frac{z^2\sigma^2}{E^2}[/tex]

This question is incomplete as the margin of error (E) and the z-score are not given.

To solve this question, I'll assume values for z and E.

Calculating [tex]\sigma^2[/tex]

This is calculated as:

[tex]\sigma^2 = N * p * (1 - p)[/tex]

Where

[tex]p = \frac{s}{N}[/tex]

[tex]p = \frac{142}{1975}[/tex]

[tex]p = 0.0719[/tex]

So, we have:

[tex]\sigma^2 = N * p * (1 - p)[/tex]

[tex]\sigma^2 = 1975 * 0.0719 * (1 - 0.0719)[/tex]

[tex]\sigma^2 = 131.79[/tex]

The formula: [tex]n = \frac{z^2\sigma^2}{E^2}[/tex] becomes

[tex]n = \frac{z^2 * 131.79}{E^2}[/tex]

Assumptions:

[tex]z = 1.96[/tex]

[tex]E = 10[/tex]

[tex]n = \frac{1.96^2 * 131.79}{10^2}[/tex]

[tex]n = \frac{3.8416 * 131.79}{100}[/tex]

[tex]n = 5.06[/tex]

Round up: [tex]n = 6[/tex]