Respuesta :
first solve the volume of the prism
V = l x w x h
where l is the length
w is the width
h is the hieght
V = 20 x 2 x 314
V = 12560 cu in
then solve the volume of the cube
V = e^3
V = 14^3
V = 2774 cu in
number of cube = 12560 / 2774
number of cube = 4 cubes
V = l x w x h
where l is the length
w is the width
h is the hieght
V = 20 x 2 x 314
V = 12560 cu in
then solve the volume of the cube
V = e^3
V = 14^3
V = 2774 cu in
number of cube = 12560 / 2774
number of cube = 4 cubes
Answer:
• first find the volume of the rectangular prism:
[tex]{ \tt{volume = length \times height \times width}} \\ \\ \dashrightarrow \: { \tt{v = 20 \times 314 \times 2}} \\ \\ { \underline{ \tt{ \: \: volume = 12560 \: in {}^{3} \: \: }}}[/tex]
• find volume of the cubes:
[tex]{ \tt{volume = {side}^{3} }} \\ \\ { \tt{v = 14 {}^{3} }} \\ \\{ \underline{ \tt{ \: \: volume = 2744 \: {in}^{3} \: \: }}}[/tex]
• Therefore:
[tex]{ \tt{cubes = \frac{volume \: of \: prism}{volume \: of \: cubes} }} \\ \\ \dashrightarrow \:{ \tt{ \frac{12560}{2744} }} \\ \\ \dashrightarrow \: { \boxed{ \tt{ \: \: 4.58 \approx \: 5 \: cubes}}}[/tex]