Respuesta :

Answer:

The length of the other two sides are: 43.09 and 32.60

Step-by-step explanation:

Let the given side of the triangle be b(= 40), and the angles be;

A = [tex]72^{o}[/tex], B = [tex]62^{o}[/tex]and C = [tex]46^{o}[/tex].

Applying the Sine rule,

[tex]\frac{a}{SinA}[/tex] = [tex]\frac{b}{SinB}[/tex] = [tex]\frac{c}{Sin C}[/tex]

So that,

[tex]\frac{a}{SinA}[/tex] = [tex]\frac{b}{SinB}[/tex]

[tex]\frac{a}{Sin 72}[/tex] = [tex]\frac{40}{Sin62}[/tex]

a = [tex]\frac{0.9511*40}{0.8829}[/tex]

  = 43.0898

a = 43.09

Also,

[tex]\frac{b}{SinB}[/tex] = [tex]\frac{c}{Sin C}[/tex]

[tex]\frac{40}{Sin62}[/tex] = [tex]\frac{c}{Sin46}[/tex]

c = [tex]\frac{0.7193*40}{0.8829}[/tex]

  = 32.5881

c = 32.60

The length of the other two sides are: 43.09 and 32.60