Given:
The two functions are:
[tex]g(b)=5b-9[/tex]
[tex]h(b)=(b-1)^2[/tex]
To find:
The value of [tex](h\circ g)(-6)[/tex].
Solution:
We have,
[tex]g(b)=5b-9[/tex]
[tex]h(b)=(b-1)^2[/tex]
We know that,
[tex](h\circ g)(b)=h(g(b))[/tex]
[tex](h\circ g)(b)=h(5b-9)[/tex]
[tex](h\circ g)(b)=[(5b-9)-1]^2[/tex]
[tex](h\circ g)(b)=[5b-10]^2[/tex]
Putting [tex]b=-6[/tex], we get
[tex](h\circ g)(-6)=[5(-6)-10]^2[/tex]
[tex](h\circ g)(-6)=[-39-10]^2[/tex]
[tex](h\circ g)(-6)=[-49]^2[/tex]
[tex](h\circ g)(-6)=2401[/tex]
Therefore, the value of [tex](h\circ g)(-6)[/tex] is 2401.