contestada

For the function g(x) = 10 VX-2, what is the inverse function?
o pr}(X) = 7+2
O q'(x) = -2
O 0760) = (+)+2
O 011(x) = (+) --

Respuesta :

Answer:

[tex]g'(x) = \frac{x^2}{100} +2[/tex]

Step-by-step explanation:

Given

[tex]g(x) = 10\sqrt{x - 2[/tex]

Required

Determine the inverse function

[tex]g(x) = 10\sqrt{x - 2[/tex]

Replace g(x) with y

[tex]y = 10\sqrt{x -2[/tex]

Swap the positions of x and y

[tex]x = 10\sqrt{y -2[/tex]

Divide through by 10

[tex]\frac{x}{10} = \sqrt{y - 2[/tex]

Square of both sides

[tex]\frac{x^2}{100} = y - 2[/tex]

Make y the subject

[tex]y = \frac{x^2}{100} +2[/tex]

Replace y with g'(x)

[tex]g'(x) = \frac{x^2}{100} +2[/tex]

Hence, the inverse function is: [tex]g'(x) = \frac{x^2}{100} +2[/tex]