HELLLPPP!!!
What is the equation of the parabola with focus(1, 1/2)
and directrix y = 3?
A. Y=x^2+17x-1
B. Y=-3/16x^2
C. Y=1/5x^2+2/5x+31/20
D. Y=-3/5x^2-14/31x+71/16


Respuesta :

Given:

Focus of a parabola = [tex]\left(1,\dfrac{1}{2}\right)[/tex]

Directrix: [tex]y=3[/tex]

To find:

The equation of the parabola.

Solution:

The equation of a vertical parabola is:

[tex]y-k=\dfrac{1}{4a}(x-h)^2[/tex]            ...(A)

Where, [tex](h,k)[/tex] is center, [tex](h,k+a)[/tex] is focus and [tex]y=k-a[/tex] is the directrix.

On comparing the focus, we get

[tex](h,k+a)=\left(1,\dfrac{1}{2}\right)[/tex]

[tex]h=1[/tex]

[tex]k+a=\dfrac{1}{2}[/tex]           ...(i)

On comparing the directrix, we get

[tex]k-a=3[/tex]              ...(ii)

Adding (i) and (ii), we get

[tex]2k=\dfrac{7}{2}[/tex]

[tex]k=\dfrac{7}{4}[/tex]

Putting [tex]k=\dfrac{7}{4}[/tex] is (i), we get

[tex]\dfrac{7}{4}+a=\dfrac{1}{2}[/tex]

[tex]a=\dfrac{1}{2}-\dfrac{7}{4}[/tex]

[tex]a=\dfrac{-5}{4}[/tex]

Putting [tex]a=\dfrac{-5}{4},h=1,k=\dfrac{7}{4}[/tex] in (A), we get

[tex]y-\dfrac{7}{4}=\dfrac{1}{4\times \dfrac{-5}{4}}(x-1)^2[/tex]

[tex]y-\dfrac{7}{4}=\dfrac{-1}{5}(x^2-2x+1)[/tex]

[tex]y-\dfrac{7}{4}=-\dfrac{1}{5}(x^2)-\dfrac{1}{5}(-2x)-\dfrac{1}{5}(1)[/tex]

[tex]y=-\dfrac{1}{5}x^2+\dfrac{2}{5}x-\dfrac{1}{5}+\dfrac{7}{4}[/tex]

On further simplification, we get

[tex]y=-\dfrac{1}{5}x^2+\dfrac{2}{5}x+\dfrac{35-4}{20}[/tex]

[tex]y=-\dfrac{1}{5}x^2+\dfrac{2}{5}x+\dfrac{31}{20}[/tex]

Therefore, the equation of the parabola is [tex]y=-\dfrac{1}{5}x^2+\dfrac{2}{5}x+\dfrac{31}{20}[/tex].

Note: Option C is correct but the leading coefficient should be negative.