Given:
The given vector is:
[tex]v=9i-6j[/tex]
To find:
The unit vector in the direction of the given vector.
Solution:
If a vector is [tex]v=ai+bj[/tex], then the unit vector in the direction of the this vector is
[tex]\hat v=\dfrac{v}{|v|}[/tex]
Where, [tex]|v|=\sqrt{a^2+b^2[/tex]
We have,
[tex]v=9i-6j[/tex]
Here, [tex]a=9[/tex] and [tex]b=-6[/tex]. So,
[tex]|v|=\sqrt{9^2+(-6)^2}[/tex]
[tex]|v|=\sqrt{81+36}[/tex]
[tex]|v|=\sqrt{117}[/tex]
[tex]|v|=3\sqrt{13}[/tex]
Now, the unit vector in the direction of the given vector is:
[tex]\hat v=\dfrac{9i-6j}{3\sqrt{13}}[/tex]
[tex]\hat v=\dfrac{9i}{3\sqrt{13}}-\dfrac{6j}{3\sqrt{13}}[/tex]
[tex]\hat v=\dfrac{3}{\sqrt{13}}i-\dfrac{2}{\sqrt{13}}j[/tex]
Therefore, the required unit vector is [tex]\hat v=\dfrac{3}{\sqrt{13}}i-\dfrac{2}{\sqrt{13}}j[/tex].