Plzzz help plzzzzzzzzzzzzzz

Given:
The figure of two quadrilaterals.
In [tex]ABCD,AB=18,BC=20,CD=22,AD=24[/tex]
In [tex]EFGH,EF=27,FG=30,GH=34, EH=36[/tex]
To find:
Whether the figures are congruent, similar or neither.
Solution:
Ratio of corresponding sides are:
[tex]\dfrac{AB}{EF}=\dfrac{18}{27}[/tex]
[tex]\dfrac{AB}{EF}=\dfrac{2}{3}[/tex]
Similarly,
[tex]\dfrac{BC}{FG}=\dfrac{20}{30}[/tex]
[tex]\dfrac{BC}{FG}=\dfrac{2}{3}[/tex]
[tex]\dfrac{CD}{GH}=\dfrac{22}{34}[/tex]
[tex]\dfrac{CD}{GH}=\dfrac{11}{17}[/tex]
And,
[tex]\dfrac{AD}{EH}=\dfrac{24}{36}[/tex]
[tex]\dfrac{AD}{EH}=\dfrac{2}{3}[/tex]
Clearly, [tex]\dfrac{AB}{EF}=\dfrac{BC}{FG}=\dfrac{AD}{EH}\neq \dfrac{CD}{GH}[/tex].
All corresponding sides are not proportional.
Therefore, the figures are neither similar nor congruent. Hence, third option is correct.