Respuesta :

Answer: C. C=-14

Step-by-step explanation:

Given

(1/6)c+1/3=-2

Multiply both sides by the LCM of 1/6 and 1/3(Least Common Multiple)

6[(1/6)c+1/3]=(-2)(6)

c+2=-12

Subtract 2 on both sides

c+2-2=-12-2

c=-14

Hope this helps!! :)

Please let me know if you have any questions

Answer:

C. c = −14

Step-by-step explanation:

Combine multiplied terms into a single fraction

[tex]\frac{1}{6} c+\frac{1}{3} = - 2[/tex]

[tex]\frac{1c}{6} +\frac{1}{3} =-2[/tex]

Multiply by 1

[tex]\frac{1c}{6} +\frac{1}{3} =-2[/tex]

[tex]\frac{c}{6} +\frac{1}{3} =-2[/tex]

Subtract [tex]\frac{1}{3}[/tex] from both sides of the equation

[tex]\frac{c}{6} +\frac{1}{3} =-2[/tex]

[tex]\frac{c}{6} +\frac{1}{3} -\frac{1}{3} =-2-\frac{1}{3}[/tex]

Subtract the numbers

[tex]\frac{c}{6} +\frac{1}{3} -\frac{1}{3} =-2-\frac{1}{3}[/tex]

[tex]\frac{c}{6} =-2-\frac{1}{3}[/tex]

Subtract the numbers

[tex]\frac{c}{6} =-2-\frac{1}{3}[/tex]

[tex]\frac{c}{6} =-\frac{7}{3}[/tex]

Multiply all terms by the same value to eliminate fraction denominators

[tex]\frac{c}{6} =-\frac{7}{3}[/tex]

[tex]c \frac{c}{6} =6(-\frac{7}{3} )[/tex]

Cancel multiplied terms that are in the denominator

[tex]c \frac{c}{6} =6(-\frac{7}{3} )[/tex]

c = 6 [tex](-\frac{7}{3} )[/tex]

Multiply the numbers

c = 6 [tex](-\frac{7}{3} )[/tex]

c = - 14