Respuesta :
Answer: C. C=-14
Step-by-step explanation:
Given
(1/6)c+1/3=-2
Multiply both sides by the LCM of 1/6 and 1/3(Least Common Multiple)
6[(1/6)c+1/3]=(-2)(6)
c+2=-12
Subtract 2 on both sides
c+2-2=-12-2
c=-14
Hope this helps!! :)
Please let me know if you have any questions
Answer:
C. c = −14
Step-by-step explanation:
Combine multiplied terms into a single fraction
[tex]\frac{1}{6} c+\frac{1}{3} = - 2[/tex]
[tex]\frac{1c}{6} +\frac{1}{3} =-2[/tex]
Multiply by 1
[tex]\frac{1c}{6} +\frac{1}{3} =-2[/tex]
[tex]\frac{c}{6} +\frac{1}{3} =-2[/tex]
Subtract [tex]\frac{1}{3}[/tex] from both sides of the equation
[tex]\frac{c}{6} +\frac{1}{3} =-2[/tex]
[tex]\frac{c}{6} +\frac{1}{3} -\frac{1}{3} =-2-\frac{1}{3}[/tex]
Subtract the numbers
[tex]\frac{c}{6} +\frac{1}{3} -\frac{1}{3} =-2-\frac{1}{3}[/tex]
[tex]\frac{c}{6} =-2-\frac{1}{3}[/tex]
Subtract the numbers
[tex]\frac{c}{6} =-2-\frac{1}{3}[/tex]
[tex]\frac{c}{6} =-\frac{7}{3}[/tex]
Multiply all terms by the same value to eliminate fraction denominators
[tex]\frac{c}{6} =-\frac{7}{3}[/tex]
[tex]c \frac{c}{6} =6(-\frac{7}{3} )[/tex]
Cancel multiplied terms that are in the denominator
[tex]c \frac{c}{6} =6(-\frac{7}{3} )[/tex]
c = 6 [tex](-\frac{7}{3} )[/tex]
Multiply the numbers
c = 6 [tex](-\frac{7}{3} )[/tex]
c = - 14