contestada

Complete the recursive formula of the arithmetic sequence -3, -1, 1, 3,...

b(1)= "answer"
b(n)=b(n-1)+ "answer"

Respuesta :

Given:

The given arithmetic sequence is:

[tex]-3,-1,1,3,...[/tex]

To find:

The recursive formula of the given arithmetic sequence.

Solution:

We have,

[tex]-3,-1,1,3,...[/tex]

Here, the first term is -3. So, [tex]b(1)=-3[/tex].

The common difference is:

[tex]d=-1-(-3)[/tex]

[tex]d=-1+3[/tex]

[tex]d=2[/tex]

The recursive formula of an arithmetic sequence is:

[tex]b(n)=b(n-1)+d[/tex]

Where, d is the common difference.

Putting [tex]d=2[/tex], we get

[tex]b(n)=b(n-1)+2[/tex]

Therefore, the recursive formula of the given arithmetic sequence is [tex]b(n)=b(n-1)+2[/tex], where [tex]b(1)=-3[/tex].