James is solving a number puzzle that involves three integers, a, b, and c, where c is a positive integer. The product of a and b is 6. The product of a and c is -4. The product of b and c is -6.

Respuesta :

Given:

Three integers, a, b, and c, where c is a positive integer.

The product of a and b is 6.

The product of a and c is -4.

The product of b and c is -6.

To find:

The values of a,b and c.

Solution:

According to the given information:

[tex]ab=6[/tex]        ...(i)

[tex]ac=-4[/tex]       ...(ii)

[tex]bc=-6[/tex]      ...(iii)

From (ii), we get

[tex]a=-\dfrsc{4}{c}[/tex]          ...(iv)

From (iii), we get

[tex]b=-\dfrsc{6}{c}[/tex]         ...(v)

Putting [tex]a=-\dfrsc{4}{c}[/tex]  and [tex]b=-\dfrsc{6}{c}[/tex] in (i), we get

[tex]\dfrac{-4}{c}\times \dfrac{-6}{c}=6[/tex]

[tex]\dfrac{24}{c^2}=6[/tex]

[tex]\dfrac{24}{6}=c^2[/tex]

[tex]4=c^2[/tex]

Taking square root on both sides, we get

[tex]\pm \sqrt{4}=c[/tex]

[tex]\pm 2=c[/tex]

It is given that c is a positive integer. So, it cannot be negative and the only value of c is [tex]c=2[/tex].

Putting [tex]c=2[/tex] in (iv), we get

[tex]a=-\dfrsc{4}{2}[/tex]

[tex]a=-2[/tex]

Putting [tex]c=2[/tex] in (v), we get

[tex]b=-\dfrsc{6}{2}[/tex]

[tex]b=-3[/tex]

Therefore, the values of a,b,c are [tex]a=-2,b=-3,c=2[/tex].