Given:
Three integers, a, b, and c, where c is a positive integer.
The product of a and b is 6.
The product of a and c is -4.
The product of b and c is -6.
To find:
The values of a,b and c.
Solution:
According to the given information:
[tex]ab=6[/tex] ...(i)
[tex]ac=-4[/tex] ...(ii)
[tex]bc=-6[/tex] ...(iii)
From (ii), we get
[tex]a=-\dfrsc{4}{c}[/tex] ...(iv)
From (iii), we get
[tex]b=-\dfrsc{6}{c}[/tex] ...(v)
Putting [tex]a=-\dfrsc{4}{c}[/tex] and [tex]b=-\dfrsc{6}{c}[/tex] in (i), we get
[tex]\dfrac{-4}{c}\times \dfrac{-6}{c}=6[/tex]
[tex]\dfrac{24}{c^2}=6[/tex]
[tex]\dfrac{24}{6}=c^2[/tex]
[tex]4=c^2[/tex]
Taking square root on both sides, we get
[tex]\pm \sqrt{4}=c[/tex]
[tex]\pm 2=c[/tex]
It is given that c is a positive integer. So, it cannot be negative and the only value of c is [tex]c=2[/tex].
Putting [tex]c=2[/tex] in (iv), we get
[tex]a=-\dfrsc{4}{2}[/tex]
[tex]a=-2[/tex]
Putting [tex]c=2[/tex] in (v), we get
[tex]b=-\dfrsc{6}{2}[/tex]
[tex]b=-3[/tex]
Therefore, the values of a,b,c are [tex]a=-2,b=-3,c=2[/tex].