Find the area of the largest square contained by a circle of radius r = 1cm. Explain your answer and justify that it is correct. Hint: Use the pythagorean theorem.

Respuesta :

Answer:

2 square cm

Step-by-step explanation:

Given :

A square is inscribed in a circle whose radius is r = 1 cm

Therefore, the diameter of the circle is 2 r = 2 x 1

                                                                      = 2 cm.

So the diagonal of the square is 2r.

Using the Pythagoras theorem, we find each of the side of the triangle is [tex]$r \sqrt 2$[/tex].

Therefore, the area of the square is given by [tex]$\text{(side)}^2$[/tex]

                                                                         = [tex]$(r\sqrt 2)^2$[/tex]

                                                                         [tex]$= 2 r^2$[/tex]

                                                                         [tex]$= 2 (1)^2$[/tex]

                                                                         [tex]$=2 \ cm^2$[/tex]

Hence the area of the largest square that is contained by a circle of radius 1 cm is 2 cm square.