Respuesta :

Answer: [tex]y=-\frac{3}{2}x+12[/tex]

Step-by-step explanation:

To find the equation of line B, we need to find the slope first, then the y-intercept. We first want to convert line A into slope-intercept form, so we can find the slope.

[tex]3x+2y=10[/tex]            [subtract both sides by 3x]

[tex]2y=10-3x[/tex]            [divide both sides by 2]

[tex]y=5-\frac{3}{2}x[/tex]

With the slope-intercept form of line A, we can see that the slope is [tex]-\frac{3}{2}[/tex]. We take the slope and the given point (4,6) to find the y-intercept of line B.

[tex]y=-\frac{3}{2}x+b[/tex]            [plug in (4,6)]

[tex]6=-\frac{3}{2}(4)+b[/tex]         [multiply]

[tex]6=-6+b[/tex]              [add both sides by 6]

[tex]b=12[/tex]

With the y-intercept, we know the equation for line B is [tex]y=-\frac{3}{2}x+12[/tex].