Respuesta :

Answer:

Plot these points

(-3,0)

(-5,0)

(-4,1)

(-2,-3)

(-6,-3)

Step-by-step explanation:

Let find the zeros of the equation.

We can factor this equation.

Factor out the -1.

[tex] - 1( {x}^{2} + 8x + 15)[/tex]

Factor using AC method

[tex] - 1(x + 3)(x + 5)[/tex]

Set all the terms equal to zero.

[tex]x + 3 = 0[/tex]

[tex]x + 5 = 0[/tex]

[tex]x = - 3[/tex]

[tex]x = - 5[/tex]

So our x intercepts are -3,0 and -5,0.

To find our vertex, apply the -b/2a.

[tex] \frac{8}{ - 2} = - 4[/tex]

Then

Substitute-4 for x.

[tex]y = - {4}^{2} - 8( - 4) - 15 = 1[/tex]

So our vertex is at (-4,1).

Find some other points like -2 and -6.

To find -2, substitute-2 into the quadratic.

[tex]y = - ( { - 2}^{2}) - 8( - 2) - 15 = - 3[/tex]

So -2,-3.

Since y=-4 is the axis of symmetry

-6,-3