Respuesta :

Answer:

The area of the sector (shaded section) is 29.51 [tex]m^{2}[/tex].

Step-by-step explanation:

Area of a sector = (θ ÷ 360) [tex]\pi[/tex][tex]r^{2}[/tex]

where θ is the central angle of the sector, and r is the radius of the circle.

From the diagram give, diameter of the circle is 26 m. So that;

r = [tex]\frac{diameter}{2}[/tex]

 = [tex]\frac{26}{2}[/tex] = 13 m

θ = 360 - (180 + 160)

  = 360 - 340

  = [tex]20^{o}[/tex]

Thus,

area of the given sector = [tex]\frac{20}{360}[/tex] x [tex]\frac{22}{7}[/tex] x [tex](13)^{2}[/tex]

                                        = [tex]\frac{20}{360}[/tex] x x [tex]\frac{22}{7}[/tex] x 169

                                         = 29.5079

The area of the sector (shaded section) is 29.51 [tex]m^{2}[/tex].