Respuesta :

Answer:

[tex]\displaystyle x=\left\{\frac{\pi}{6}+2n\pi, \frac{5\pi}{6}+2n\pi, \frac{3\pi}{2}+2n\pi\right\}, n\in\mathbb{Z}[/tex]

Step-by-step explanation:

We are given the equation:

[tex]2\cos^2(x)=\sin(x)+1[/tex]

And we want to find all solutions for x.

First, we should put the equation into terms of only one trigonometric ratio.

Since we are given cos²(x), we can turn this into sine. Recall the Pythagorean Identity which states:

[tex]\sin^2(x)+\cos^2(x)=1[/tex]

Therefore:

[tex]\cos^2(x)=1-\sin^2(x)[/tex]

By substitution:

[tex]2(1-\sin^2(x))=\sin(x)+1[/tex]

Distribute:

[tex]2-2\sin^2(x)=\sin(x)+1[/tex]

Isolate the equation:

[tex]2\sin^2(x)+\sin(x)-1=0[/tex]

We can factor:

[tex](2\sin(x)-1)(\sin(x)+1)=0[/tex]

Zero Product Property:

[tex]2\sin(x)-1=0\text{ or } \sin(x)+1=0[/tex]

Solve for each case:

[tex]\displaystyle \sin(x)=\frac{1}{2}\text{ or } \sin(x)=-1[/tex]

We can use the unit circle.

sin(x) = 1/2 for every π/6 and 5π/6. So, it will continue every 2π.

sin(x) = -1 every 3π/2. And this will also continue every 2π.

Hence, our solutions are:

[tex]\displaystyle x=\left\{\frac{\pi}{6}+2n\pi, \frac{5\pi}{6}+2n\pi, \frac{3\pi}{2}+2n\pi\right\}, n\in\mathbb{Z}[/tex]

Note:

If you only need the solutions within the interval [0, 2π), then it is:

[tex]\displaystyle x=\left\{\frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}\right\}[/tex]