Respuesta :

Answer:

(3, 0 )

Step-by-step explanation:

Given a parabola in standard form

y = ax² + bx + c (a ≠ 0 )

Then the x- coordinate of the vertex is

[tex]x_{vertex}[/tex] = - [tex]\frac{b}{2a}[/tex]

y = 5x² - 30x + 45 ← is in standard form

with a = 5, b = - 30 , then

[tex]x_{vertex}[/tex] = - [tex]\frac{-30}{10}[/tex] = 3

Substitute x = 3 into the function for corresponding value of y

y = 5(3)² - 30(3) + 45 = 45 - 90 + 45 = 0

vertex = (3, 0 )

Answer:

Vertex is (3,0)

Step-by-step explanation:

Given y= 5x^2 - 30x + 45

         y    = 5 ( x^2 - 6x + 9)

               = 5 ( x -3 )^ 2 + 0

Standard formula of parabola is y = a(x - k)^2 + k where vertex is (h,k)

Here, h = 3 and k = 0

So,  Vertex is ( 3, 0)