Answer:
[tex]x<2.5[/tex] and [tex]x > 2.5[/tex] are the solutions
Step-by-step explanation:
Given
[tex]-4x + 5 > -5[/tex]
[tex]-25 > -5(x + 2.5)[/tex]
Required
Determine if their solution is x < 2.5 or x > 2.5
[tex]-4x + 5 > -5[/tex]
Collect like terms
[tex]-4x>-5-5[/tex]
[tex]-4x>-10[/tex]
Divide by -4
[tex]x<\frac{-10}{-4}[/tex]
[tex]x<2.5[/tex]
[tex]-25 > -5(x + 2.5)[/tex]
Open bracket
[tex]-25 > -5x - 12.5[/tex]
Collect like terms
[tex]5x > 25- 12.5[/tex]
[tex]5x > 12.5[/tex]
Divide by 5
[tex]x > \frac{12.5}{5}[/tex]
[tex]x > 2.5[/tex]