A segment with endpoints A (2, 6) and C (5,9) is partitioned by a point B such that AB
and BC form a 3:1 ratio. Find B. (5 points)
A.) (3.66, 7.66)
B.) (4.25, 8.25)
C.) (3.5, 10.5)
D.) (2.33, 6.33)

Respuesta :

Answer:

B

Step-by-step explanation:

In geometry, points are used to divide segments into subsegments using partitions or ratios. The location of B is: (4.25,8.25)

The given parameters are:

[tex]A = (2,6)[/tex]  -- [tex](x_1,y_1)[/tex]

[tex]C =(5,9)[/tex] -- [tex](x_2,y_2)[/tex]

[tex]m:n = 3 : 1[/tex]

To calculate the B, we make use of the following partition formula

[tex]B = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

Substitute known values

[tex]B = (\frac{3 \times 5 + 1\times 2}{3+1},\frac{3\times 9 + 1 \times 6}{3+1})[/tex]

[tex]B = (\frac{17}{4},\frac{33}{4})[/tex]

[tex]B = (4.25,8.25)[/tex]

Hence, the location of B is: [tex](4.25,8.25)[/tex]

Read more at:

https://brainly.com/question/24043290