On a coordinate plane, a square has points A (negative 5, 2), B (1, 2), C (negative 4, 1), and D (negative 5, negative 4). If a translation of is applied to square ABCD, what is the y-coordinate of B'?

Respuesta :

Answer:

The y coordinates of B' is: 8

Step-by-step explanation:

Given

[tex]A = (-5,2)[/tex]

[tex]B =(1,2)[/tex]

[tex]C = (-4,1)[/tex]

[tex]D = (-5,-4)[/tex]

Translation of (x, y) → (x + 6, y – 10)  ---Missing from the question

Required

Determine the y coordinates of B'

We have:

(x, y) → (x + 6, y – 10)  

And

[tex]B =(1,2)[/tex]

So the translation from B to B' is:

[tex]B (1,2) \to B'(1+6,2-10)[/tex]

[tex]B (1,2) \to B'(7,-8)[/tex]

So, we have:

[tex]B' = (7,-8)[/tex]

The y coordinates of B' is: 8