Find angle B. What is angle B.

Answer:
B=45 Degrees
Step-by-step explanation:
You can use law of sines to answer. Law of Sines states that [tex]\frac{sin(a)}{A} =\frac{sin(b)}{B}[/tex]. That means that [tex]\frac{sin(60)}{4\sqrt{6} }=\frac{sin(b)}{8}[/tex]. Multiplying 8 to both sides gives us [tex]\frac{8sin(60)}{4\sqrt{6} }=sin(b)[/tex]. By using inverse of sin, we get [tex]b = sin^{-1} (\frac{8sin(60)}{4\sqrt{6} } )[/tex]. Plugging that into a calculator gives us b=45 degrees.