Answer:
[tex](a)\ y = 26 + 0.44x[/tex]
[tex](b)\ 114\ copies[/tex]
Step-by-step explanation:
Given
[tex]Base\ Charge = \$26[/tex]
[tex]Rate = 44c[/tex] per copy
Solving (a): Linear Equation
The total charges (y) is: the base charge + the rate * number of copies (x).
So, we have:
[tex]y = 26 + 0.44 * x[/tex]
The 0.44 is 44 cents converted to dollars
[tex]y = 26 + 0.44x[/tex]
Solving (b): Purchase if he budgets $76.16
This implies that y = 76.16
So, we have:
[tex]y = 26 + 0.44x[/tex]
[tex]76.16 = 26 + 0.44x[/tex]
Collect like terms
[tex]0.44x = 76.16 - 26[/tex]
[tex]0.44x = 50.16[/tex]
Solve for x
[tex]x = \frac{50.16}{0.44}[/tex]
[tex]x = 114[/tex]