Answer:
- 13[tex]\sqrt{6}[/tex]
Step-by-step explanation:
Using the rule of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]
Simplifying [tex]\sqrt{54}[/tex]
[tex]\sqrt{54}[/tex]
= [tex]\sqrt{9(6)}[/tex]
= [tex]\sqrt{9}[/tex] × [tex]\sqrt{6}[/tex]
= 3[tex]\sqrt{6}[/tex]
Then
2[tex]\sqrt{6}[/tex] - 5[tex]\sqrt{54}[/tex]
= 2[tex]\sqrt{6}[/tex] - 5 (3[tex]\sqrt{6}[/tex] )
= 2[tex]\sqrt{6}[/tex] - 15[tex]\sqrt{6}[/tex]
= - 13[tex]\sqrt{6}[/tex]