Respuesta :

Answer:

C)   [tex]\overline {AD}[/tex] ≅ [tex]\overline {AC}[/tex],  [tex]\overline {BD}[/tex] ≅ [tex]\overline {CD}[/tex], [tex]\overline {AD}[/tex] ≅ [tex]\overline {AD}[/tex]

Step-by-step explanation:

From the given diagram, we have;

Segment [tex]\overline {AB}[/tex] in triangle ΔABD is congruent to segment [tex]\overline {AC}[/tex] in triangle ΔACD

Segment [tex]\overline {AD}[/tex] is congruent to segment [tex]\overline {AD}[/tex]  by reflexive property

For ΔABD to be congruent to ΔACD, by the Side-Side-Side, SSS, congruency postulate, all the sides of ΔABD should be congruent to the corresponding side of ΔACD, the required added statement is therefore;

Segment [tex]\overline {BD}[/tex] is congruent to segment [tex]\overline {CD}[/tex]

The correct option is therefore option C;

[tex]\overline {AD}[/tex] ≅ [tex]\overline {AD}[/tex], [tex]\overline {BD}[/tex] ≅ [tex]\overline {CD}[/tex], [tex]\overline {AD}[/tex] ≅ [tex]\overline {AC}[/tex]

Answer:

c

Step-by-step explanation: