Find Arc measure of ABC

Answer:
268°
Step-by-step explanation:
[tex] In\: \odot O, [/tex] AB is diameter.
So, [tex] \widehat{AB} \:\&\: \widehat {BA}[/tex] are semicircular arcs.
[tex] \therefore m\widehat {AB} =m\widehat {BA} = 180\degree [/tex]
[tex] \because \: m\widehat {BC} = m\widehat {BA} - m\widehat {CA} [/tex]
[tex] \therefore \: m\widehat {BC} = (180-92)\degree [/tex]
[tex] \therefore \: m\widehat {BC} =88\degree [/tex]
[tex] \because m\widehat {ABC} = m\widehat {AB}+m\widehat {BC} [/tex]
[tex] \therefore m\widehat {ABC} = 180\degree+88\degree [/tex]
[tex] \therefore m\widehat {ABC} = 268\degree [/tex]