Answer:
[tex]V=9.2565m/s[/tex]
Explanation:
From the question we are told that:
Force [tex]F = 34 N[/tex]
Time [tex]t = 0.6 s[/tex]
Length of pedal [tex]l_p=16.5cm \approx0.165m[/tex]
Radius of wheel [tex]r = 33 cm = 0.33 m[/tex]
Moment of inertia, [tex]I = 1200 kgcm2 = 0.12 kg.m2[/tex]
Generally the equation for Torque on pedal [tex]\mu[/tex] is mathematically given by
[tex]\mu=F*L\\\mu=34*0.165[/tex]
[tex]\mu=5.61N.m[/tex]
Generally the equation for angular acceleration [tex]\alpha[/tex] is mathematically given by
[tex]\alpha=\frac{\mu}{l}[/tex]
[tex]\alpha=\frac{5.61}{0.12}[/tex]
[tex]\alpha=46.75[/tex]
Therefore Angular speed is \omega
[tex]\omega=\alpha*t[/tex]
[tex]\omega=(46.75)*(0.6)[/tex]
[tex]\omega=28.05rad/s[/tex]
Generally the equation for Tangential velocity V is mathematically given by
[tex]V=r\omega[/tex]
[tex]V=(0.33)(28.05)[/tex]
[tex]V=9.2565m/s[/tex]