Respuesta :

Answer:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx = \frac{1}{5}( \arctan(x^5)) + c[/tex]

Step-by-step explanation:

Given

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx[/tex]

Required

Integrate

We have:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx[/tex]

Let

[tex]u = x^5[/tex]

Differentiate

[tex]\frac{du}{dx} = 5x^4[/tex]

Make dx the subject

[tex]dx = \frac{du}{5x^4}[/tex]

So, we have:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx[/tex]

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, \frac{du}{5x^4}[/tex]

[tex]\frac{1}{5} \int\ {\frac{1}{1 + x^{10}}} \, du[/tex]

Express x^(10) as x^(5*2)

[tex]\frac{1}{5} \int\ {\frac{1}{1 + x^{5*2}}} \, du[/tex]

Rewrite as:

[tex]\frac{1}{5} \int\ {\frac{1}{1 + x^{5)^2}}} \, du[/tex]

Recall that: [tex]u = x^5[/tex]

[tex]\frac{1}{5} \int\ {\frac{1}{1 + u^2}}} \, du[/tex]

Integrate

[tex]\frac{1}{5} * \arctan(u) + c[/tex]

Substitute: [tex]u = x^5[/tex]

[tex]\frac{1}{5} * \arctan(x^5) + c[/tex]

Hence:

[tex]\int\ {\frac{x^4}{1 + x^{10}}} \, dx = \frac{1}{5}( \arctan(x^5)) + c[/tex]